1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–249.
3. Lee JH, Choi KD, Jung HY, et al. Seroprevalence of
Helicobacter pylori in Korea: a multicenter, nationwide study conducted in 2015 and 2016. Helicobacter 2018;23:e12463.
4. Schistosomes, liver flukes and Helicobacter pylori. IARC working group on the evaluation of carcinogenic risks to humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 1994;61:1–241.
5. Correa P. A human model of gastric carcinogenesis. Cancer Res 1988;48:3554–3560.
6. Yousefi B, Mohammadlou M, Abdollahi M, et al. Epigenetic changes in gastric cancer induction by
Helicobacter pylori. J Cell Physiol 2019;234:21770–21784.
7. Muhammad JS, Eladl MA, Khoder G.
Helicobacter pylori-induced DNA methylation as an epigenetic modulator of gastric cancer: recent outcomes and future direction. Pathogens 2019;8:23.
8. Wong BC, Lam SK, Wong WM, et al.
Helicobacter pylori eradication to prevent gastric cancer in a high-risk region of China: a randomized controlled trial. JAMA 2004;291:187–194.
9. Wu CY, Kuo KN, Wu MS, Chen YJ, Wang CB, Lin JT. Early
Helicobacter pylori eradication decreases risk of gastric cancer in patients with peptic ulcer disease. Gastroenterology 2009;137:1641–1648; e82.
10. Chen HN, Wang Z, Li X, Zhou ZG.
Helicobacter pylori eradication cannot reduce the risk of gastric cancer in patients with intestinal metaplasia and dysplasia: evidence from a meta-analysis. Gastric Cancer 2016;19:166–175.
11. Fukase K, Kato M, Kikuchi S, et al. Effect of eradication of
Helicobacter pylori on incidence of metachronous gastric carcinoma after endoscopic resection of early gastric cancer: an open-label, randomised controlled trial. Lancet 2008;372:392–397.
12. Choi JM, Kim SG, Choi J, et al. Effects of
Helicobacter pylori eradication for metachronous gastric cancer prevention: a randomized controlled trial. Gastrointest Endosc 2018;88:475–485.e2.
13. Hwang YJ, Kim N, Lee HS, et al. Reversibility of atrophic gastritis and intestinal metaplasia after
Helicobacter pylori eradication - a prospective study for up to 10 years. Aliment Pharmacol Ther 2018;47:380–390.
14. Choi IJ, Kook MC, Kim YI, et al.
Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N Engl J Med 2018;378:1085–1095.
15. Uno K, Iijima K, Shimosegawa T. Gastric cancer development after the successful eradication of
Helicobacter pylori. World J Gastrointest Oncol 2016;8:271–281.
16. Nephew KP, Huang TH. Epigenetic gene silencing in cancer initiation and progression. Cancer lett 2003;190:125–133.
18. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001;293:1068–1070.
19. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. J Pathol 2002;196:1–7.
20. Chan AO, Lam SK, Wong BC, et al. Promoter methylation of E-cadherin gene in gastric mucosa associated with
Helicobacter pylori infection and in gastric cancer. Gut 2003;52:502–506.
21. Leung WK, Man EP, Yu J, et al. Effects of
Helicobacter pylori eradication on methylation status of E-cadherin gene in noncancerous stomach. Clin Cancer Res 2006;12:3216–3221.
24. Shi J, Zhang G, Yao D, et al. Prognostic significance of aberrant gene methylation in gastric cancer. Am J Cancer Res 2012;2:116–129.
26. Wang Y, Huang LH, Xu CX, et al. Connexin 32 and 43 promoter methylation in
Helicobacter pylori-associated gastric tumorigenesis. World J Gastroenterol 2014;20:11770–11779.
27. Kaneda A, Wakazono K, Tsukamoto T, et al. Lysyl oxidase is a tumor suppressor gene inactivated by methylation and loss of heterozygosity in human gastric cancers. Cancer Res 2004;64:6410–6415.
29. Nardone G, Compare D. Epigenetic alterations due to diet and
Helicobacter pylori infection in gastric carcinogenesis. Expert Rev Gastroenterol Hepatol 2008;2:243–248.
32. Perri F, Cotugno R, Piepoli A, et al. Aberrant DNA methylation in non-neoplastic gastric mucosa of
H. pylori infected patients and effect of eradication. Am J Gastroenterol 2007;102:1361–1371.
33. Sepulveda AR, Yao Y, Yan W, et al. CpG methylation and reduced expression of O6-methylguanine DNA methyltransferase is associated with
Helicobacter pylori infection. Gastroenterology 2010;138:1836–1844.
34. Kim KK, Kim HB. Protein interaction network related to
Helicobacter pylori infection response. World J Gastroenterol 2009;15:4518–4528.
35. Sugita H, Iida S, Inokuchi M, et al. Methylation of BNIP3 and DAPK indicates lower response to chemotherapy and poor prognosis in gastric cancer. Oncol Rep 2011;25:513–518.
36. Yan J, Zhang M, Zhang J, Chen X, Zhang X.
Helicobacter pylori infection promotes methylation of WWOX gene in human gastric cancer. Biochem Biophys Res Commun 2011;408:99–102.
37. Kang GH, Lee S, Kim JS, Jung HY. Profile of aberrant CpG island methylation along the multistep pathway of gastric carcinogenesis. Lab Invest 2003;83:635–641.
38. Yu J, Cheng YY, Tao Q, et al. Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 2009;136:640–651.e1.
39. Hu X, Sui X, Li L, et al. Protocadherin 17 acts as a tumour suppressor inducing tumour cell apoptosis and autophagy, and is frequently methylated in gastric and colorectal cancers. J Pathol 2013;229:62–73.
41. Peterson AJ, Menheniott TR, O'Connor L, et al.
Helicobacter pylori infection promotes methylation and silencing of trefoil factor 2, leading to gastric tumor development in mice and humans. Gastroenterology 2010;139:2005–2017.
42. Katayama Y, Takahashi M, Kuwayama H.
Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun 2009;388:496–500.
43. Lu XX, Yu JL, Ying LS, et al. Stepwise cumulation of RUNX3 methylation mediated by
Helicobacter pylori infection contributes to gastric carcinoma progression. Cancer 2012;118:5507–5517.
44. Wang LJ, Jin HC, Wang X, et al. ZIC1 is downregulated through promoter hypermethylation in gastric cancer. Biochem Biophys Res Commun 2009;379:959–963.
45. Cheng AS, Li MS, Kang W, et al.
Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 2013;144:122–133.e9.
46. Bussière FI, Michel V, Mémet S, et al.
H. pylori-induced promoter hypermethylation downregulates USF1 and USF2 transcription factor gene expression. Cell Microbiol 2010;12:1124–1133.
48. Muhammad JS, Nanjo S, Ando T, et al. Autophagy impairment by
Helicobacter pylori-induced methylation silencing of MAP1LC3Av1 promotes gastric carcinogenesis. Int J Cancer 2017;140:2272–2283.
49. Tanaka S, Nagashima H, Uotani T, Graham DY, Yamaoka Y. Autophagy-related genes in
Helicobacter pylori infection. Helicobacter 2017;22:e12376.
51. Oshimo Y, Kuraoka K, Nakayama H, et al. Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 2004;112:1003–1009.
52. Oue N, Mitani Y, Motoshita J, et al. Accumulation of DNA methylation is associated with tumor stage in gastric cancer. Cancer 2006;106:1250–1259.
53. Yu J, Tao Q, Cheng YY, et al. Promoter methylation of the Wnt/beta-catenin signaling antagonist Dkk-3 is associated with poor survival in gastric cancer. Cancer 2009;115:49–60.
54. Hibi K, Goto T, Kitamura YH, et al. Methylation of the TFPI2 gene is frequently detected in advanced gastric carcinoma. Anticancer Res 2010;30:4131–4133.
55. Tahara T, Arisawa T. DNA methylation as a molecular biomarker in gastric cancer. Epigenomics 2015;7:475–486.
56. Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in
Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res 2006;12(3 Pt 1): 989–995.
57. Tahara T, Arisawa T, Shibata T, et al. Risk prediction of gastric cancer by analysis of aberrant DNA methylation in non-neoplastic gastric epithelium. Digestion 2007;75:54–61.
58. Akopyants NS, Clifton SW, Kersulyte D, et al. Analyses of the cag pathogenicity island of
Helicobacter pylori. Mol Microbiol 1998;28:37–53.
59. Lima VP, Silva-Fernandes IJ, Alves MK, Rabenhorst SH. Prevalence of
Helicobacter pylori genotypes (vacA, cagA, cagE and virB11) in gastric cancer in Brazilian's patients: an association with histopathological parameters. Cancer Epidemiol 2011;35:e32–e37.
60. Peek RM Jr, Blaser MJ.
Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2002;2:28–37.
61. Yamaoka Y, El-Zimaity HM, Gutierrez O, et al. Relationship between the cagA 3' repeat region of
Helicobacter pylori, gastric histology, and susceptibility to low pH. Gastroenterology 1999;117:342–349.
62. Azuma T, Yamakawa A, Yamazaki S, et al. Correlation between variation of the 3' region of the cagA gene in
Helicobacter pylori and disease outcome in Japan. J Infect Dis 2002;186:1621–1630.
63. Sayehmiri F, Kiani F, Sayehmiri K, et al. Prevalence of cagA and vacA among
Helicobacter pylori-infected patients in Iran: a systematic review and meta-analysis. J Infect Dev Ctries 2015;9:686–696.
64. Hayashi Y, Tsujii M, Wang J, et al. CagA mediates epigenetic regulation to attenuate let-7 expression in
Helicobacter pylori-related carcinogenesis. Gut 2013;62:1536–1546.
65. Yamaoka Y, Kita M, Kodama T, Sawai N, Kashima K, Imanishi J. Induction of various cytokines and development of severe mucosal inflammation by cagA gene positive
Helicobacter pylori strains. Gut 1997;41:442–451.
66. Wang M, Flkuta T, Takashima M, et al. Relation between interleukin-1beta messenger RNA in gastric fundic mucosa and gastric juice pH in patients infected with
Helicobacter pylori. J Gastroenterol 1999;34(Suppl 11): 10–17.
67. Huang FY, Chan AO, Rashid A, Wong DK, Cho CH, Yuen MF.
Helicobacter pylori induces promoter methylation of E-cadherin via interleukin-1β activation of nitric oxide production in gastric cancer cells. Cancer 2012;118:4969–4980.
68. Niwa T, Tsukamoto T, Toyoda T, et al. Inflammatory processes triggered by
Helicobacter pylori infection cause aberrant DNA methylation in gastric epithelial cells. Cancer Res 2010;70:1430–1440.
69. Ando T, Yoshida T, Enomoto S, et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 2009;124:2367–2374.
70. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell 2003;115:787–798.
74. Link A, Kupcinskas J, Wex T, Malfertheiner P. Macro-role of microRNA in gastric cancer. Dig Dis 2012;30:255–267.
76. Sekar D, Krishnan R, Thirugnanasambantham K, Rajasekaran B, Islam VI, Sekar P. Significance of microRNA 21 in gastric cancer. Clin Res Hepatol Gastroenterol 2016;40:538–545.
77. Tsukamoto Y, Nakada C, Noguchi T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3zeta. Cancer Res 2010;70:2339–2349.
82. Silva-Fernandes IJ, Alves MK, Lima VP, et al. Differential expression of MYC in
H. pylori-related intestinal and diffuse gastric tumors. Virchows Arch 2011;458:725–731.
83. Noto JM, Peek RM. The role of microRNAs in
Helicobacter pylori pathogenesis and gastric carcinogenesis. Front Cell Infect Microbiol 2012;1:21.
84. Wang J, Wang Q, Liu H, Hu B, Zhou W, Cheng Y. MicroRNA expression and its implication for the diagnosis and therapeutic strategies of gastric cancer. Cancer Lett 2010;297:137–143.
87. Saito Y, Suzuki H, Tsugawa H, et al. Dysfunctional gastric emptying with down-regulation of muscle-specific microRNAs in
Helicobacter pylori-infected mice. Gastroenterology 2011;140:189–198.
89. Rotkrua P, Akiyama Y, Hashimoto Y, Otsubo T, Yuasa Y. MiR-9 downregulates CDX2 expression in gastric cancer cells. Int J Cancer 2011;129:2611–2620.
91. Wan HY, Guo LM, Liu T, Liu M, Li X, Tang H. Regulation of the transcription factor NF-kappaB1 by microRNA-9 in human gastric adenocarcinoma. Mol Cancer 2010;9:16.
92. Kim K, Lee HC, Park JL, et al. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics 2011;6:740–751.
94. Luo D, Chen J, Huang S, Xu J, Song X, Yu P. MicroRNA‑18b acts as an oncogene in gastric cancer by directly targeting Kruppel‑ like factor 6. Mol Med Rep 2019;19:1926–1934.
96. Tsai KW, Wu CW, Hu LY, et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer 2011;129:2600–2610.
99. Wu J, Qian J, Li C, et al. miR-129 regulates cell proliferation by downregulating Cdk6 expression. Cell Cycle 2010;9:1809–1818.
100. Shen R, Pan S, Qi S, Lin X, Cheng S. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun 2010;394:1047–1052.
102. Lim JH, Kim SG, Choi JM, Yang HJ, Kim JS, Jung HC.
Helicobacter pylori is associated with miR-133a expression through promoter methylation in gastric carcinogenesis. Gut Liver 2018;12:58–66.
107. Yoon JH, Choi YJ, Choi WS, et al. GKN1-miR-185-DNMT1 axis suppresses gastric carcinogenesis through regulation of epigenetic alteration and cell cycle. Clin Cancer Res 2013;19:4599–4610.
110. Tsai KW, Hu LY, Wu CW, et al. Epigenetic regulation of miR-196b expression in gastric cancer. Genes Chromosomes Cancer 2010;49:969–980.
113. Kiga K, Mimuro H, Suzuki M, et al. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic
Helicobacter pylori infection. Nat Commun 2014;5:4497.
114. Wada R, Akiyama Y, Hashimoto Y, Fukamachi H, Yuasa Y. miR-212 is downregulated and suppresses methyl-CpG-binding protein MeCP2 in human gastric cancer. Int J Cancer 2010;127:1106–1114.
115. Zhang Z, Chen S, Fan M, et al.
Helicobacter pylori induces gastric cancer via down-regulating miR-375 to inhibit dendritic cell maturation. Helicobacter 2021;26:e12813.
116. Ye F, Tang C, Shi W, et al. A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced by
Helicobacter pylori lipopolysaccharide. Int J Cancer 2015;136:2120–2131.
117. Yang Q, Jie Z, Cao H, et al. Low-level expression of let-7a in gastric cancer and its involvement in tumorigenesis by targeting RAB40C. Carcinogenesis 2011;32:713–722.
118. Shen J, Xiao Z, Wu WK, et al. Epigenetic silencing of miR490-3p reactivates the chromatin remodeler SMARCD1 to promote
Helicobacter pylori-induced gastric carcinogenesis. Cancer Res 2015;75:754–765.
120. Takei Y, Takigahira M, Mihara K, Tarumi Y, Yanagihara K. The metastasis-associated microRNA miR-516a-3p is a novel therapeutic target for inhibiting peritoneal dissemination of human scirrhous gastric cancer. Cancer Res 2011;71:1442–1453.
121. Belair C, Darfeuille F, Staedel C.
Helicobacter pylori and gastric cancer: possible role of microRNAs in this intimate relationship. Clin Microbiol Infect 2009;15:806–812.
122. Shin CM, Kim N, Lee HS, et al. Changes in aberrant DNA methylation after
Helicobacter pylori eradication: a long-term follow-up study. Int J Cancer 2013;133:2034–2042.
123. Choi J, Kim SG, Kim BG, Koh SJ, Kim JW, Lee KL.
Helicobacter pylori eradication modulates aberrant CpG island hypermethylation in gastric carcinogenesis. Korean J Gastroenterol 2016;68:253–259.
124. Yang HJ, Kim SG, Lim JH, Choi JM, Kim WH, Jung HC.
Helicobacter pylori-induced modulation of the promoter methylation of Wnt antagonist genes in gastric carcinogenesis. Gastric Cancer 2018;21:237–248.
125. Tahara T, Tahara S, Horiguchi N, et al. Gastric mucosal microarchitectures associated with irreversibility with
Helicobacter pylori eradication and downregulation of micro RNA (miR)-124a. Cancer Invest 2019;37:417–426.
126. Shiotani A, Uedo N, Iishi H, et al.
H. pylori eradication did not improve dysregulation of specific oncogenic miRNAs in intestinal metaplastic glands. J Gastroenterol 2012;47:988–998.